Helmert and affine parameters

Helmert or affine transformation parameter editing and converting to inverse transformation.

A, B, Scale, Rotation

Parameters of the Helmert transformation. Editing A- and B-parameters changes automatically scale and rotation angle. Editing scale and rotation angle changes automatically A- and B-parameters.

A1, A2, B1, B2

Parameters of the Affine transformation.

Old XY

When using the center point method, there are coordinates of the center point of the old coordinate system. Otherwise these values are zeroes.

New XY

When using the center point method, there are coordinates of the center point of the new coordinate system. Otherwise these values are dx and dy values of the transformation.

dZ

In addition to normal two-dimensional Helmert-transformation, the height level can also be changed.

dX / dY

Converts weight center parameters to dX/dY translation parameters.

Swap

Inverts transformation. Handling of the XY values depends if the old coordinate system center coordinates were given. dZ values changes sign.


Helmert

The parameters can be defined in a formula:

X = X0 + X * A - Y * B

Y = Y0 + X * B + Y * A

Be aware of the sign of B.

Below is an example from National Land Survey of Finland. Conversion from Helsinki City into KKJ.

P = PHelsinki - 21411.896

I = IHelsinki - 51725.460

PKkj = 6676543.079 + 0.9999286 * P + 0.0139389 * I

IKkj = 2554561.907 + 0.9999286 * I - 0.0139389 * P

resulting:

A = 0.9999276, B = -0.0139389

X old = 21411.896, Y old = 51725.460, X new = 6676543.079, Y new = 2554561.907

Affine

The parameters can be defined in a formula:

xx = a + cx + dy

yx = b + ex + fy

a = 47.9729266055

b = -2000051.8003553776

c = 0.9999976876

d = -0.0000122328

e = 0.0000109212

f = 0.9999911101

resulting:

A1 (c) = 0.9999976876, A2 (d) = -0.0000122328, B1 (e) = 0.0000109212, B2 (f) = 0.9999911101

X old = 0.0, Y old = 0.0, X new (a) = 47.9729266055, Y new (b) = -2000051.8003553776